TWO-PHASE FLOW IN A DUCT OF CONSTANT
CROSS SECTION (A QUALITATIVE INVESTIGATION)
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and G. V. Zhizhin

A detailed qualitative investigation of a one-dimensional stationary flow of an ideal gas carrying solid
particles is carried out with the aid of a three-dimensional phase diagram. The results of the analysis al-
lowed us to determine the character of the flow and its accompanying process of impulse and energy ex-
change between the phases for all regimes which are possible in principle. The boundaries of stable and
unstable zones of equilibrium states are determined. It is shown that the relationships of two~phase flow
in the general case (when the initial values of the velocities of the individual phases as well as tempera-
tures are not equal) are not continuously transformed into relationships which correspond to flows with
identical values of the velocity or temperature of the phases or to flows where one of the effects is absent.

The investigation of two-phase flows, as a rule, requires the use of numerical methods of calculation
with the aid of a digital computer. However, the variety of possible regimes of flow and the sharp, some-
times qualitative difference of them for, apparently, closely related initial conditions make difficult the
interpretation and generalization of the results of a numerical calculation [1}. Therefore a qualitative in-
vestigation, which is systematic and brought to a conclusion, of a comparatively simple (with respect to
the formulation) problem concerned with a stationary one-dimensional flow in a duct of constant cross sec~
tion of a mixture of gas with solid particles, with the thermal and dynamic interaction between the phases
taken into account, is of interest. The difference of the local values of the velocity and temperature of the
individual phases serves as a cause for the interaction. All other forms of possible effects (the friction
along the wall, heat emission to the walls, and others) are not taken into account. If is assumed that the
fraction of the cross section of the duct occupied by particles and their partial pressure are negligibly
small. The viscosity and thermal conductivity of the gas are taken into account in implicit form only in
the expressions of interaction of the phases. In addition, the Mach number calculated with respect to the
relative velocity is assumed to be less than unity (i.e., the heat flux from one phase into another is approx-
imately calculated from the difference of the values of the static temperature). It is also assumed that the
diameters of the particles of the solid phase only slightly differ from one another, so that a certain effec-
tive diameter of particles can be introduced into the interaction calculation. Phase inversions, which are
possible in principle, are not taken into account, but no constraints whatever are imposed on the fempera-
ture of the solid phase.

Side by side with the final results of the investigation, the method used — the analysis of the process
in plane and largely in spatial (three-dimensional) phase diagrams, which is common to a number of prob-
lems of gas dynamics (for example, for MHD or EHD quasi-one-dimensional flows, flows with ionization
or dissociation, and others [2-8]) — may be of interest. This applies, in particular, to the judgement ex-
pressed below about the major, qualitative (not to mention quantitative) difference of results of investiga-
tion for a flow with both forms of inequilibrium or only with one of them — dynamic or thermal. In the lat-
ter case the analysis of the problem is naturally simplified and can be confined to the framework of a plane
phase diagram. However, a continuous passage to a limit for it from a three-dimensional diagram does
not exist, and the conditions determining equilibrium processes and judgement about their stability are
distorted. The assumption about one-dimensionality of the flow, which is common to the entire work, cor-
responds to the problem of qualitative investigation and, apparently, can serve as an acceptable approxi-
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mation for the real phenomenon. The starting point for the investigation, just as in other analogous cases,
is the eguations ofthe law of inversion of the actions [9].

Below we present comparatively detailed reasoning and results of a physical character. As for the
details of the mathematical investigation, their discussion, although somewhat sketchy owing to their cum-
bersomeness, is sufficiently complete to take into account all the basic stages of the analysis.

1. Basic Equations. For the above constraints (for a more complete form of equations of a two-

phase flow see, for example, [10, 11]) the equations of contmu.lty of motion and energy are written in the
simplest form

d d| F
0y d';‘ +u = p‘ =0, Ax:%:const (1.1)
duy d
P1u1—— + %piuy dlf: + =0 (1.2)

o (eoTs + 25 ) + o 5 (e, + 5-) =0 (1.3)
where u, p, p, T are, respectively, the velocity, density, pressure and temperature; % is the ratio of mass
flows of the phases (solid and gaseous), F is the area of cross section of the duct (it is assumed that the
area in the cross section occupied by the solid phase Fy <« F; and F;~ F =const forthe gas); indices 1 and 2
here and in the following refer to the gas and particles respectively, ¢p is the specific heat of the gas at a
constant pressure; ¢ is the specific heat of the particles, x is a coordinate oriented along the duct. Equa-
tions (1.1)-(1.3) must be supplemented by an equation of state of the gas; in view of the assumptions made
above, this equation must be taken in the form

p = p,RT; (1.4)

where R is the specific gas constant. We must also supplement these equations by equations which give
the velocity u, and the temperature T, of the particles. With the usual assumptions, introducing the coef-
ficients of resistance Cx and heat output @ (for a particle assumed to be spherical with diameter d), the
equations for the velocity and temperature of the particles are represented in the form [10-13]

d 3 C
Paliy du; =T ; P | %y — uy | (uy — uy) (1.5)

arT 62,
Pallg d; == cd; Nu(T,—1T5)

where

C.=C,(Re), Re—lu—ul?

Vi
P1Vieyy

d
Nu= 5= = Nu(Re,Pr), Pr=—
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The concrete criterial relationships Cx=Cx (Re) and Nu=
Nu(Re, Pr) can be chosen, dependent on the range of values of the
Reynolds number (see, for example, [12]}). For the subsequent
qualitative investigation their form is not essential. Furthermore,
for what is to follow, Eds. (1.5) are conveniently written in the form
of "relaxation equations"

dus '_ Uy — ug aTs T —Ts (1.6)

dx [P dz A

where 14 and I are respectively characteristic assumed lengths
(in the general case, variable) of the dynamic and thermal relax-
ation.

v The initial equations are transformed into the standard form
of equations of inversion of actions [9] for the velocity of flow,

Fig. 1 thermodynamic parameters, and the Mach number M:
O — 1) = L2E —BW, kW) + kW,
W[SK%%Z—, szu(ul—uz)%%- . (1.7
Wom iy @ M=gh wi=vd

where £ can be uy, py, p, Ty, oT M2, Wj is action connected with the mechanical isentropic work of acceler-
ation (deceleration) of the particles; W, Wq are actions due to friction and heat exchange between the
phases, respectively; kg, kf’ kq are the influence coefficients presented in Table 1.

2. Preliminary Discussion. In its full form the problem of investigation reduces to the construction
of the integral curves of the system of equations (1.1)-(1.4) and (1.6); i.e., it reduces to the determination
of the character of variation, along the length of the duct, of the velocity and temperature of both phases
uy, Uy, Ty, and Ty as well as the pressure and the Mach number. To reduce the number of variables we
introduce the relative values of the phase velocity V =u;/u, and the temperature ®=T,/T,. From physical
considerations it is obvious that the inequalities

d
d2 >0 for V>1, G20 for V<1

and, respectively,

4T’
M50 for 6>1, 20 for 81

correspond to the problem under consideration.

With these constraints (including physically impossible processes of the type duy>0 for V<1 and
others similar) taken into account, we can point out 16 processes which are possible in principle and which
are presented in Table 2. A part of the regimes must be excluded or restricted. This applies to the re-
gimes A-I and D-IV which contradict the first law of thermodynamics, the regime D-II (also D-IV) which
contradicts the second law. In addition, proceeding from the law of inversion of actions, two of the re-
gimes (A-II and B-1I) can exist only in a subsonic region of flow, while one (C-II) can exist only in a super-
sonic region. (The same law excludes also the regime D-II both for M< 1 and for M>1.) The restrictions
are connected with the fact that in all regimes of D-II type the constituent elementary actions — the work
done by the gas, friction and heat supply — lead to a single-valued acceleration of the gas for M< 1, while
for M > 1 they lead to its deceleration and decrease in the temperature [9]. In all remaining cases (and
calculation confirms this), mutual compensation of actions having an effect that is opposite in character on
the gas flow is possible. These preliminary considerations limit the number of possible regimes for var-
ious values of V, ®, and M. At the same time, the restricted regimes (A-I, D-II and D-IV) naturally are
not realized for a flow in ducts of variable cross section, whereas the constraints with respect to the Mach
number apply to eylindrical and narrowing ducts.

The system of equations (1.1)-(1.6) which describes the flow of a two-phase mixture containg many
unknowns (uy, uy, Ty, Ty, p, M) whose character of variation along the length of the duct under different
conditions is yet to be determined. In fact, the dependence of flow parameter on a coordinate constitutes a
final result of a qualitative investigation carried out with the aid of a multidimensional phase diagram. The

720



#°} Nodes solution is considerably simplified ifitis possible (as it
is in the case under consideration) to reduce the number
of phase coordinates by appropriately choosing the de-
fining functions. In the general case of a two-phase flow,
for unequal values of the velocities of the two phases as
well as the temperature, the initial system of equations
(1.1)-(1.6) can be reduced to three autonomous equations
and, accordingly, to a three-dimensional phase space
M?~V=®. In particular cases when V=1 or ®=1 (and
also for uy=const or T, =const) we have to deal with
plane phase diagrams M?—@ or M%—V.

The qualitative investigation of the equations hy
means of phase diagrams reduces to the following:

1) We find a set of points at which the trajectories
of the phase space change their direction. At these
points the derivatives of phase coordinates with respect

Fig. 2 to the independent variable become zero. In a phase
plane sets of such points form lines, while in a space
they form surfaces. Such lines and surfaces are called zero lines and surfaces [2]. Zero lines (surfaces)
together with straight line (plane) M?= {,* uponpassingthroughwhich the derivatives undergo a disconti-
nuity (+), divide the phase diagram into regions with constant signs of the derivatives. This allows us to
represent the behavior of the trajectories at all points of the phase diagrams, with the exception of the sin~-
gular points at which all zero lines (surfaces) intersect.

2) We determine the type of the singular points. The simplest singular points, as we know, are sin-
gularities of the saddle, node, focus and center types [2, 14]. In the general case, however, we encounter
more complex singular points [6, 15].

3) In the phase plane we find separatrices separating one type of trajectories from another. In a
phase space separatrices form separatrix surfaces.

4) We construct lines or surfaces at the points of which the derivatives of the unknowns, not being
phase coordinates, become zero. From the intersection of these lines or surfaces with the trajectories
we can establish the character of variation of all parameters of the flow along the duct and hence com-
plete the investigation.

3. Three-Dimensional Phase Diagram. The system of equations of inversion of actions (1.7) for the
velocity and temperature of the phases, after introduction of the relative values V=u,/u, and ®=T,/T, in
the role of new dependent variables, can be reduced to the three equations

av Fy e Fg
(M2_1)W____%_’ (MZ_l)W___V_Z.g
ame Fy
M — 1) g = g (3.1

where ¥ is a characteristic length coordinate directed along the duct:

Fy=@— V2= O — 1) [yM*(V— 1) + M + %(W-M} o

cp@
c%

(Mﬂ_uh@(y— YMV — 1) [YM2(V — 1) +1]a

S

Fo=—(©—1)V* |1 —1 ¢
Fy=(© — ) VEXM* 4 1) = MPOW — 1) (1 — 1) (XM + 1) (V — 1) + (1 + ) V]

and @ =(cp/c)(ly/lg). The parameter @, for the sake of simplicity, can be taken as constant. This does not
influence the results of a qualitative analysis, since the type of singular points on the line of equilibrium

* The straight line (plane) M2=1 constitutes a set of points corresponding to a limiting state of the flow.
Some of them are established at the exit cross section of the duct {crisis of flow [9]), others are estab-

lished at the entry to it.
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does not depend on the magnitude of a (see below). With the condition @ =const taken into ’a.ccount the
system of equations (3.1) is autonomous, and its solutions can be depicted by trajectories in the phase
space M2—V—@ (of course, in the region of it where M2, V, and ®> 0).

The functions Fy, Fg and F)p being zero constitute equations of the zero surfaces, at the points of

which, respectively,
%76

= O, —EX«— = O

The zero surfaces and their intersections with the plane M?=1 are shown in Fig. 1. The arrows on
the surfaces point to the regions of the phase space in which the sign of the derivative of the given variable
with respect to the coordinate is positive. The zero surfaces intersect along the straight line V=1, =1
and along the curve M* =1, 1 = (6 — )V*— 030 (V — 1).(V — T, where T' =(y—1) /y. All points of the
straight line V=1, ®=1 correspond to the positions of equilibrium. We linearize the system (3.1) in the
neighborhood of this straight line:

av ae
=% &

(M2—1)———(V_1)a K"’ (H_K—M2> ©— 1)
(M2—1)ﬂ’—=(v—1)aTer—(® 1)[ 2 (M2—1)+7M2——ﬂ (3.2)
<M2—1>————(V—i)a(w1>M*+(@—~1>M2(7M2+1)

The eigenvalues which determine the type of singularity of the positions of equilibrium on the straight
line V=1, ®=1 are found from the following determinant being zero [2, 12, 13]:

s (=) =3), ey 0

TM? M2 — 1) cp/en 4 (YM2— 1) .
a(a}rz_i)’ ! )(34:——1)( —h, 0)=0 5.3
(r + 1) M* M2 (yM2+-1) —

orE—10 * T or—1

One of the eigenvalues is identically zero. Consequently, the trajectories in the neighborhood of the
singular points of the straight line of equilibrium are located in planes. Two other eigenvalues Ay 2<0 for
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ME> 4, ME< (44 %)7W* [y (v* = (¢p +xc) / (Cy + xc)). This corresponds to a stable position of equilib-
rium of the node type. The phase trajectories converge to points of this type (see Fig. 2). For small de-
viations from the values V=1 and ®=1 a tendency to return into the initial state prevails. For (1 + =) *p* /
v<< M? < 1 the eigenvalues A;>0, A;<0. On this segment of the straight line V=1, ®=1 singular points of
the saddle type correspond to unstable positions of equilibrium. Small deviations from them lead to fur-
ther widening of the trajectories away from the positions of equilibrium.

To determine the singular points in the plane M2=1 we use the variable 7 introduced above. The sys-
tem of equations (3.1) can be reduced to two differential equations in M2 and 5. Consequently, analogously
to [4] the phase trajectories in the neighborhood of the singular points of the plane M%=1 are also located
in planes. The equation in M? and n after linearization has the form

dM? An 4+ B (M2 —1) (3.4)

I T CnrDirE=—1

where

R e V=) [t
A= B = oy ( tor—v)

ev: V2
C=SL@+1+2(—on— 5

12
D= a0V — |G- [ —1)—1] — -1 + (£~ L) x
[aT(ZVfF—i) 2y L2011

The eigenvalues are found from the following determinant [13] being zero:

(A—1) B
c D—n|"

The eigenvalues depend on the coordinates of the singular points and the parameters of the problem.
One of the possible distributions of singular points on the curve n=0, M2=1 is shown in Fig. 2. For V<1l a
part of the curve can consist of singular points of the focus type (for example, for a =1, y=1.4 the region
of foci is formed for the values ®=0.17). The insignificant dimension of this region and the narrow range
of parameters which corresponds to it as well as the relative simplicity of the trajectories allow us to
omit the analysis of flows for singular points of the focus type. A continuous transition of the velocity of
flow of the gas through the velocity of sound is possible through singular points of the saddle and node types.
The curve =0 divides the plane M2=1 into regions of the flow crisis (not shaded in Fig. 2) and the limiting
states at the entry to the duct (shaded in Fig. 2).

The origin of the coordinates of the phase space (M2=V =0=0) also constitutes a singular point—a
three-dimensional node. Indeed, linearizing Egs (3.1) in the neighborhood of this point, we obtain

am: e

’ ae 2]

aM?

L
W TV

Consequently, A;=Xy =23

To construct the field of trajectories in the entire phase space we find the separatrix surfaces formed
from trajectories issuing in different directions from the singular points of the straight line of equilibrium
V=0=1 and the curve n=0, M2=1. Three separatrix surfaces (S;, S, and S;) are depicted in Fig. 3. The
surface S; (Fig. 3a) passes through the straight line of equilibrium V,=1, ®=1, the ® (V=M?=0) axis, and
the curve n=0, M2=1. A continuous transition from subsonic to supersonic flows is basically realized
along this surface. The surface S, passes through the curve n=0, M2=1, a part of the ® (V=M?%=0) axis,
and a part of the straight line ®=1, M?=0. A continuous transition from supersonic to subsonic flows is
realized along it. Finally, the surface S; (Fig. 3c) passes through the straight line of equilibrium V=1,

@ =1, the straight line ®=1, M?2=0 and a part of the ® (V=M?%=0) axis. A trajectory passing through the
point M2=1, V=1, ®=1 belongs to this surface. The separatrix surfaces divide the phase space into six
regions, each of which includes a subregion of supersonic (Fig. 3d) and that of subsonic flow of the gas
(Fig. 3e). On the separatrix surfaces (Fig. 3) we have marked individual trajectories which form these
surfaces. The arrows on the trajectories indicate the variation of the phase variables M2, ® and V along
the duct (in the positive direction of the ¥ coordinate).

The trajectories of the phase space which do not belong to the phase surfaces are drawn to them in
the neighborhood of singular lines. This circumstance allows us to represent quite clearly the entire field
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of trajectories which begin at the origin of the coordi-

nates and at the limiting states at the entry in the duct

(on the plane M?=1) or originate from positions of un-

stable equilibrium, i.e., coincide with the correspond-

ing separatrices of saddles. The trajectories end, ar-

riving at the crisis of the flow or at a position of stable
equilibrium.

Any concrete flow in the duct is matched on the
phase diagram by a definite segment of one of the phase
trajectories whose initial point corresponds to the state
of the flow in the entry section of the duct and whose
final point corresponds to the state of flow in the exit
section.

We note that the behavior of the integral curve
can easily be explained by the second law of thermo-
dynamics. The entropy S of a two-phase flow grows
along the phase trajectories in the directions indicated
by arrows. On the line of equilibrium V=1, ®=1 an
extremum of the entropy corresponds to each point:
for M2>1 and M2 < (4 -+ %)™ v* / v it is a maximum;

for 1 >> M2 > (1 + ®%)™* v* / 7 it is a maximum for the trajectories tending to the lines of equilibrium and a
minimum for trajectories going away from it. In the plane M2=1 the derivatives of the gas-dynamic pa-
rameters with respect to the coordinate tend to infinity, while the variation in the entropy is bounded.
Therefore the states for M2=1 are isentropic (in relation to the variation of the flow parameters dS/du,; =0
and others). The set of points bounded by the curve =0 in the plane M2=1 (shaded in Fig. 2) corresponds
to states with minimum entropy, while the rest of the points of the plane correspond to a maximum of en-
tropy. Thus, all states on the line of equilibrium V=1, =1 and the plane M2=1 (excluding the access points
on the line n=0, M2=1) are limiting states — the initial states in which the entropy is a minimum and the
final states in which it is a maximum. At the access points all flow parameters, including entropy, vary

continuously.

To determine the character of variation of the different variables along the length of the duct, we ad-
ditionally find surfaces in the phase space at points of which the derivatives of pressure, velocity and tem-
perature of the phases with respect to the independent parameter ¥ become zero. From Eqs. (1.6) and the

law of inversion of actions (1.7) we obtain

dp

ax

=0, if

duy

dy, !

Fp=I[V +1TM*(V —1)]a(V —1)0 — V3 (8 — 1) =0

if F,=0—1)V2— M (V—1)(V —T) =0

if Fr=0-—1H)V(1— M)+ OTM(V—1) [YyM*(V—1)+1] =0

V=1,

dTy

The surfaces Fp=0, Fu1=0, FT1=0, the planes V=1, ®=1 and M?=1, shown in Fig. 4, divide the
phase space into 28 regions with given signs of the derivatives (see Table 3). Examining how the trajec-
tories in each of the six zones of the phase space pass through these surfaces and between them, we can
establish the character of variation of the pressure, velocity and temperature of the phases as well as

other parameters along the trajectories.

In Fig. 5 we have presented a summary of practically all possible regimes of flow classified with
respect to the types of trajectories which lead to supersonic and subsonic stable positions of equilibrium
(V=1, ®=1) or end with the crisis (M®=1) as well as for trajectories which correspond to a continuous
transition through the velocity of sound. The character of variation of the parameters along the length of
the duct for regimes corresponding to singular points of the node type is shown in Fig. 5a (M>1) and
Fig. 5b (M<1). The numbers above the curves denote the corresponding regions of the phase space (see
Fig. 4). The regimes of flow shown in Fig. 5¢ correspond to singular points of the saddle type on the
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straight line of equilibrium. The variation of the flow parameters ending with the crisis (M=1) is shown
in Fig. 5d. The flows corresponding to a continuous transition through the velocity of sound along the tra-
jectories forming the sepdratrix surfaces S; and S, (Fig. 3a and b) are characterized by the regimes pre-
sented in Fig. 5e and {, respectively.

4. Plane Phase Diagramg. We consider four particular cases of two-phase flows which can be in- -
vestigated by means of plane phase diagrams M2—~V or M?—@ , namely:

1) a two-phase flow with identical temperatures of both phases @=1 for V= 1. Instantaneous tem-
perature relaxation 4 =0 corresponds to this. Instead of Eq. (1.6) we take dT,/dx=dT,/dx;

2) a two-phase flow with identical phase velocities V=1 for @ = 1. The instantaneous velocity re-
laxation Iq=0 and the equation du;/dx = du,/ dx corresponds to this;

3) a two-phase flow with a constant temperature of the solid phase T,=const (dTy/ dx=0) in the case
of infinite length of temperature relaxation i = «;

4) a two-phase flow with a constant velocity of the solid phase uy =const (du,/dx=0) in the case Zy=
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For these conditions the system of equations (1.1)-(1.6) reduces to equations of the law of inversion
of actions. They constitute a system of two equations for V and Mi for ;=0 or }y=oo:

d —
M= 1) 227 = [ 0 — vy~ 1,2 1y L

dln M2 — 1M s —
(2~ 1) S = O [y (b ) 0 7 a2 -] 22

where My2=v/y,M? for %, =0 (6=1) and Ms?=M? for I, = = (T,=const) and, respectively, for 6 and M,? for
14=0 or 13==, we have

dln@ 1—1M.2 —
(M2 — 1)=7 =[%~:;(—-J—‘)—(MJ—1)] (el, 1)
dln M2 8—1

c
My~ )= =% (L + M) =

where M, 2=(1+%) M? for 13=0(V=1) and M,?=M? for l4==(u, = const).

The phase diagrams constructed for the equations just presented and the zones of unstable equilibria
are shown in Fig. 6. Since the qualitative form of the plane diagrams for the cases ®=1 and T,=const, on
one hand, and V=1 and uy= const, on the other hand, coincides in pairs, we have depicted in Fig. 6 two di-

agrams with two equal scales along the abscissa axis.

The phase trajectories in Fig. 6a and b show the character of variation of the dimensionless velocity
V and the temperature ® and the square of the Mach number M,? along the length of the duct (in the direc-
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tion indicated by the arrows on the curves). The equilibrium states for ®=1 or T, = const are represented
by the straight line V=1 (Fig. 6a) and the straight line ®=1 (Fig. 6b) for V=1 or u,=const; the line My?=1
corresponds to the limiting states.

All trajectories in Fig. 6 begin from the limiting states at the entry into the duct — on the line M2=1,
or they start from the states of unstable equilibrium. The trajectories end at the points of stable equilib-
rium on the line V=1 (Fig. 6a) or the line ®=1 (Fig. 6b) or on the line My2=1 at the points corresponding
to the crisis at the exit from the duct.

It should be emphasized the limiting states are matched on these diagrams in the case ®=1 by the
equation M2 =v*/y and in the case V=1 by the equation M2=(1+ %)'1, while for T%=const and u; =const,
just as in the general case of a three-dimensional phase diagram, they are matched by the equation M2=1.

In spite of the qualitative correspondence between the phase frajectories in a space and on a plane,
there is no continuous limiting transition between them — from weakly nonequilibrium flows (@~ 1 or V~ 1)
to equilibrium flows (8=1 or V=1) and also from the conditions T;~ const or u,~ const to the equalities
Ty=const and uy=const. This manifests itself first of all in the difference of the dimensions of the zone of
unstable equilibria (Fig. 6¢). In the general case on the line V=1 and ® =1 this zone occupied the segment
bounded by the inequalities (1 4- »)7y* / y << M2 << 1. On plane diagrams on the line V=1, for T,=const,
we have (1+%)"1<M?<1 and, for 1;=0, respectively (1 -+ %)™y* / vy << M*® << 1. Analogously to this, on the
line ®=1, for u,=const, we have v*/y<M2<1 and, for V=1, respectively. (1 + %)"y* / y << M2 < (1 + %)L
This means that for ® =1 the critical velocity is given by the quantity u* = ay = V' 3¥p [ p (for » >1,
v¥ = (¢p + nc) / (ev + we) — 1 18 equal to the isothermal velocity of sound), while for V=1 the critical ve-
locity is u* = a, = Vyp/ (p; + p2) (since (p;+py)/p;=(1+n)). Introducing the conditional Mach number
My* =uy/u*, we obtain in both cases the critical velocity My* =1.

The results obtained here allow us in principle to determine the behavior of a two-phase flow (i.e.,
the trends of variation of the veloecity and temperature of the phases, the pressure, the Mach number, and
others along the length of a duct of constant cross section) for any initial conditions. They contain all va-
rieties of regimes of flow as well as indications of a qualitative imperfection of the spatial calculation
simplifications (assumptions about the partial equilibrium u;=u, or T;=T,), particularly for subsonic flows.
The availability of a three-dimensional phase diagram can considerably facilitate the course of numerical
calculations for particular conditions. Fixing these conditions, we can establish the possibility of practical
realization and the boundaries of existence of the individual regimes. By means of the diagram we can
carry out an analysis of discontinuous two-phase flows (having jumps) for the system considered and al-
so predict certain conclusions about the motion of a two-phase flow in ducts of variable cross section,
which is a case of practical importance, and finally, we can take into account phase transitions. These
problems, however, necessitate a special investigation.
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