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A detailed qualitative investigation of a one-dimensional  s tat ionary flow of an ideal gas ca r ry ing  solid 
par t ic les  is c a r r i ed  out with the aid of a three-dimensional  phase diagram. The resul ts  of the analysis  a l-  
lowed us to determine the charac te r  of the flow and its accompanying p rocess  of impulse and energy ex- 
change between the phases for all reg imes  which are  possible in principle.  The boundaries of stable and 
unstable zones of equilibrium states are  determined. It is shown that the relat ionships of two-phase flow 
in the general  case (when the initial values of the velocities of the individual phases as  well as t empera -  
tures  are  not equal) are  not continuously t ransformed into relationships which cor respond  to flows with 
identical values of the velocity or t empera ture  of the phases or to flows where one of the effects is absent. 

The investigation of two-phase flows, as a rule, requires  the use of numerical  methods of calculation 
with the aid of a digital computer.  However, the var ie ty  of possible regimes  of flow and the sharp, some-  
t imes qualitative difference of them for, apparently,  closely related initial conditions make difficult the 
interpretat ion and generalization of the resul ts  of a numerical  calculation [1]. Therefore  a qualitative in- 
vestigation, which is  systematic  and brought to a conclusion, of a comparat ively  simple (with respec t  to 
the formulation) problem concerned with a s tat ionary one-dimensional flow in a duct of constant c ross  sec-  
tion of a mixture of gas with solid par t ic les ,  with the thermal  and dynamic interaction between the phases 
taken into account, i s  of interest .  The difference of the local values of the velocity and tempera ture  of the 
individual phases serves  as a cause for the interaction. All ether fo rms  of possible effects (the fr ict ion 
along the wall, heat emission to the walls, and others) are not taken into account. It is  assumed that the 
fraction of the c ross  section of the duct occupied by par t ic les  and their  partial  p r e s su re  are  negligibly 
small.  The viscosi ty  and thermal  conductivity of the gas are taken into account in implicit  form only in 
the express ions  of interaction of the phases.  In addition, the Mach number calculated with respect  to the 
relat ive velocity is  assumed to be less than unity (i.e., the heat flux f rom one phase into another is approx- 
imately  calculated f rom the difference of the values of the static temperature) .  It is also assumed that the 
d iameters  of the par t ic les  of the solid phase only slightly differ from one another, so that a cer ta in  effec-  
tive d iameter  of par t ic les  can be introduced into the interaction calculation. Phase inversions,  which are  
possible in principle,  a re  not taken into account, but no constra ints  whatever are  imposed on the t empera -  
ture of the solid phase. 

Side by side with the final resul ts  of the investigation, the method used - the analysis  of the process  
in plane and largely in spatial ( three-dimensional)  phase diagrams,  which is common to a number of prob-  
lems of gas dynamics (for example, for MHD or  EHD quasi-one-dimensional  flows, flows with ionization 
or  dissociation, and others [2-8]) - may  be of interest .  This applies, in par t icular ,  to the judgement ex- 
p ressed  below about the major ,  qualitative (not to mention quantitative) difference of resul ts  of invest iga-  
tion for a flow with both forms of inequilibrium or only with one of them - dynamic or thermal.  In the lat-  
t e r  case the analysis  of the problem is  naturally simplified and can be confined to the framework of a plane 
phase diagram. However, a continuous passage to a limit for it f rom a three-dimensional  diagram does 
not exist, and the conditions determining equilibrium p rocesses  and judgement about their  stability are  
distorted. The assumption about one-dimensionati ty of the flow, which is common to the entire work, co r -  
responds to the problem of qualitative investigation and, apparently,  can serve as an acceptable approxi-  
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m a r i o n  fo r  the  r e a l  phenomenon .  The  s t a r t i n g  po in t  for  the  i n v e s t i g a t i o n ,  j u s t  a s  in o t h e r  a n a l o g o u s  c a s e s ,  
i s  t he  equa t i ons  of  t he  law of  i n v e r s i o n  of t he  a c t i o n s  [9]. 

Be low we p r e s e n t  c o m p a r a t i v e l y  d e t a i l e d  r e a s o n i n g  and r e s u l t s  of a p h y s i c a l  c h a r a c t e r .  As  for  the  
d e t a i l s  of  the  m a t h e m a t i c a l  i n v e s t i g a t i o n ,  t h e i r  d i s c u s s i o n ,  a l though  Somewhat  s k e t c h y  owing  to  t h e i r  c u m -  
b e r s o m e n e s s ,  i s  s u f f i c i e n t l y  c o m p l e t e  to t ake  in to  accoun t  a l l  the  b a s i c  s t a g e s  of the  a n a l y s i s .  

1. B a s i c  Equa t ions .  F o r  the  above  c o n s t r a i n t s  ( for  a m o r e  c o m p l e t e  f o r m  of  e q u a t i o n s  of a two-  
p h a s e  f low see ,  fo r  e x a m p l e ,  [10, 11]) the  e q u a t i o n s  of  c on t i nu i t y  of m o t i o n  and  e n e r g y  a r e  w r i t t e n  in  the  
s i m p l e s t  f o r m  

dui -~x  p~u2F~ Pi ~ ~- ui = 0, ,• = ~ = const (1.1) 

dul du2 _ _  dp 
PiUl--~- x -F Xpiul-'~-" x -~ -~x = 0  

d 2 ~ ) plul.'~x (CpTi + Ul"~'-~ ) + ~Plul-~x (cT~ + - -  = 0  

(1.2) 

(1.3) 

w h e r e  u, p ,  p, T a r e ,  r e s p e c t i v e l y ,  the  v e l o c i t y ,  dens i ty ,  p r e s s u r e  and t e m p e r a t u r e ;  ~ i s  the  r a t i o  of  m a s s  
f lows  of  the  p h a s e s  ( s o l i d  and g a s e o u s ) ,  F i s  the  a r e a  of c r o s s  s e c t i o n  of the  duc t  ( i t  i s  a s s u m e d  tha t  the  
a r e a  in  the  c r o s s  s e c t i o n  o c c u p i e d  by the s o l i d  p h a s e  F 2 << F 1 and F i ~  F = c o n s t  f o r t h e  gas) ;  i n d i c e s  1 and 2 
h e r e  and  in the  fo l lowing  r e f e r  to  the  g a s  and  p a r t i c l e s  r e s p e c t i v e l y ,  Cp i s  the  s p e c i f i c  h e a t  of the  g a s  a t  a 
c o n s t a n t  p r e s s u r e ;  c i s  the  s p e c i f i c  hea t  of  the  p a r t i c l e s ,  x i s  a c o o r d i n a t e  o r i e n t e d  a l o n g  the  duct .  E q u a -  
t i o n s  (1 .1)- (1 .3)  m u s t  be s u p p l e m e n t e d  by an equa t ion  of s t a t e  of  the  gas ;  in  v i ew of the  a s s u m p t i o n s  m a d e  
above ,  t h i s  equa t ion  m u s t  be t a k e n  in  the  f o r m  

P --~ piBT1 (1.4) 

w h e r e  R i s  the  s p e c i f i c  gas  cons tan t .  We m u s t  a l s o  s u p p l e m e n t  t h e s e  e q u a t i o n s  by e q u a t i o n s  which  g ive  
the  v e l o c i t y  u 2 and  the  t e m p e r a t u r e  T 2 of the  p a r t i c l e s .  Wi th  the  u sua l  a s s u m p t i o n s ,  i n t r o d u c i n g  the c o e f -  
f i c i e n t s  of  r e s i s t a n c e  C x and  hea t  output  ~ (for  a p a r t i c l e  a s s u m e d  to be s p h e r i c a l  wi th  d i a m e t e r  d), the  
e q u a t i o n s  for  the  v e l o c i t y  and  t e m p e r a t u r e  of  the  p a r t i c l e s  a r e  r e p r e s e n t e d  in  t he  f o r m  [10-13] 

w h e r e  

cIu~ 3 C x 
p2U~-~x :TTPi ui--u2](ui--u2) 

P2U~ ~dTz ~- ~6~' NU ( T 1 -  T2) 

C~. = C~. ( R e ) ,  R e  I ~ - -  ~ I d 

~td PlVlCpi 
Nu ---- ~ = Nu (Re, Pr), Pr ~ ~ 

(i.5) 
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Fig. 1 

The concre te  c r i t e r i a l  re la t ionships  C x :  C x (Re) and Nu= 
Nu(Re, Pr)  can be chosen, dependent on the range of values  of the 
Reynolds number  (see,  for  example ,  [12]). For  the subsequent  
quali tat ive invest igat ion the i r  f o rm i s  not essent ia l .  F u r t h e r m o r e ,  
for  what is  to follow, Eqs.  (1.5) a r e  conveniently wri t ten in the fo rm 
of "re laxat ion equations" 

du~ ui -- u~ dT~ Ti -- T~ (1.6) 
d x l d ' -~x "~- l t 

where l d and l t a r e  r e spec t ive ly  cha rac t e r i s t i c  a s sumed  lengths 
(in the general  case ,  var iable)  of the dynamic and the rma l  r e l a x -  
ation. 

The initial  equations a re  t r a n s f o r m e d  into the s tandard  fo rm 
of equations of invers ion  of act ions [9] for  the ve loc i ty  of flow, 
thermodynamic  p a r a m e t e r s ,  and the Mach number  M: 

(M~ i ) =  dln~ ~--k lW t -~- k i W  l -~ kqWq 

du~ (1.7) W l ~ ~4 a l  ~u2 du2dx ' W f  = n (U 1 - -  /g2) a l  2 dx 

c~ dT~ M -:- /tl T ~ Wq : - - -  U Cp (T -- t)' dx ' a l '  ai* Pl 

where ~ can be us, Pt, P, T1, orMZ, Wl is action connected with the mechanica l  i sen t rop ic  work of a c c e l e r -  
ation (deceleration) of the par t ic les ;  W f ,  Wq a re  act ions  due to fr ic t ion and heat exchange between the 
phases ,  respec t ive ly ;  k l ,  k f ,  kq a re  the influence coeff icients  p resen ted  in Table 1. 

2. P r e l i m i n a r y  Discussion.  In i t s  full fo rm the p rob l em of invest igat ion reduces  to the construct ion 
of the in tegra l  curves  of the s y s t e m  of equations (1.1)-(1.4) and (1.6); i .e . ,  i t  r educes  to the determinat ion 
of the c h a r a c t e r  of var ia t ion,  along the length of the duct, of the veloci ty  and t e m p e r a t u r e  of both phases  
ul, u~., T1, and T~. as well as the p r e s s u r e  and the Mach number.  To reduce  the number  of va r i ab l e s  we 
introduce the re la t ive  values  of the phase veloci ty  V = u l /u  2 and the t e m p e r a t u r e  | = T 1 / T  2. F r o m  physical  
cons idera t ions  i t  i s  obvious that  the inequal i t ies  

gu~ du~ d 0  for  V ( i  dx ~ 0  ~for V ~ i ,  dz' 

and, respec t ive ly ,  

dr~ ~ 0 fo r  0 ~  i, dT2 ~.~ 0 for  0 ~ l 
- d x  ' d x  ' ~ "  - 

c o r r e s p o n d  to the p rob lem under  considerat ion.  

With these  cons t ra in t s  (including physica l ly  imposs ib le  p r o c e s s e s  of the type duz> 0 for V < 1 and 
o thers  s imi lar )  taken into account,  we can point out 16 p r o c e s s e s  which a r e  poss ib le  in pr inciple  and which 
a r e  p resen ted  in Table  2. A pa r t  of the r e g i m e s  mus t  be excluded or  r es t r i c ted .  This  appl ies  to the r e -  
g imes  A- I  and D-IV which contradic t  the f i r s t  law of the rmodynamics ,  the r eg ime  D-II  (also D-IV) which 
cont radic ts  the second law. In addition, proceeding f rom the law of invers ion  of act ions,  two of the r e -  
g imes  (A-H and B-II) can exis t  only in a subsonic region of flow, while one (C-II) can exis t  only in a supe r -  
sonic region.  (The same  law excludes a lso  the r eg ime  D-II  both for  M< 1 and for M> 1.) The r e s t r i c t i ons  
a r e  connected with the fact  that  in all  r e g i m e s  of D-I I  type the consti tuent  e l e m e n t a r y  act ions - the work 
done by the gas,  fr ict ion and heat  supply - lead to a s ingle-va lued  acce le ra t ion  of the gas  for  M < 1, while 
for  M> 1 they lead to i t s  decelera t ion and dec rease  in the t e m p e r a t u r e  [9]. In all r emain ing  ca se s  (and 
calculat ion con f i rms  this), mutual  compensat ion of ac t ions  having an effect  that i s  opposite in c h a r a c t e r  on 
the gas flow is  possible .  These  p r e l i m i n a r y  cons idera t ions  l imi t  the number  of poss ib le  r e g i m e s  for v a r -  
ious values  of V, | and M. At the same  t ime,  the r e s t r i c t e d  r e g i m e s  (A-I,  D-I I  and D-IV) natural ly  a re  
not r ea l i zed  for  a flow in ducts of va r i ab le  c r o s s  section, whereas  the cons t ra in t s  with r e s p e c t  to the Math  
number  apply to cyl indrical  and nar rowing duets. 

The s y s t e m  of equations (1.1)-(1.6) which desc r ibes  the flow of a two-phase  mix tu re  contains many  
unknowns (ut, u2, T~, T2, p, M) whose c h a r a c t e r  of var ia t ion  along the length of the duct under different 
conditions is  yet  to be determined.  In" fact ,  the dependence of flow p a r a m e t e r  on a coordinate  const i tutes  a 
final r e su l t  of a quali tat ive invest igat ion c a r r i e d  out with the aid of a mul t id imensional  phase  d iagram.  The 
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solution is considerably simplified if it is possible (as it 
is in the case under consideration) to reduce the number 
of phase coordinates by appropr ia te ly  choosing the de- 
fining functions. In the general case of a two-phase flow, 
for unequal values of the velocit ies of the two phases as 
well as the tempera ture ,  the initial sys tem of equations 
(1.1)-(1.6) can be reduced to three autonomous equations 
and, accordingly,  to a three-dimensional  phase space 
M ~ - V - |  In par t icu lar  cases  when V = 1 or @ = 1 (and 
also for u~=const or Tz=const)  we have to deal with 
plane phase d iagrams M2-|  or M2-V. 

The qualitative investigation of the equations by 
means of phase d iagrams reduces  to the following: 

1) We find a set of points at which the t ra jec tor ies  
of the phase space change their  direction. At these 
points the derivatives of phase coordinates with respect  
to the independent variable become zero.  In a phase 
plane sets of such points form lines, while in a space 

they form surfaces .  Such lines and surfaces  a re  called zero  lines and surfaces  [2]. Zero lines (surfaces) 
together  with s traight  line (plane) M 2 = 1, * upon pass ing throughwhich  the derivatives undergo a disconti-  
nuity (~ ~), divide the phase d iagram into regions with constant signs of the derivatives.  This allows us to 
represen t  the behavior of the t r a jec to r ies  at all points of the phase diagrams,  with the exception of the sin- 
gular points at which all zero lines (surfaces) in tersect .  

2) We determine the type of the singular points. The simplest  singular points, as we know, are  sin-  
gulari t ies of the saddle, node, focus and center  types [2, 14]. In the general case,  however, we encounter 
more  complex singular points [6, 15]. 

3) In the phase plane we find sepa ra t r i ces  separat ing one type of t r a jec to r ies  f rom another. In a 
phase space sepa ra t r i ces  form separa t r ix  surfaces .  

4) We cons t ruc t  lines or  surfaces  at the points of which the derivatives of the unknowns, not being 
phase coordinates ,  become zero.  F r o m  the in tersect ion of these lines or surfaces  with the t r a jec to r ies  
we can establ ish the cha rac te r  of variat ion of all pa r ame te r s  of the flow along the duct and hence com-  
plete the investigation. 

3-- Three-Dimensional Phase Diagram. The system of equations of inversion of actions (1.7) for the 
velocity and temperature of the phases, after introduction of the relative values V = uJu 2 and | = TI/T 2 in 
the role of new dependent variables, can be reduced to the three equations 

dV FV (M 2 - 1 ) ~ -  V2 0 , (M *-t)-~)r _ 
(M 2 -- i) dU~ FM 

where • is a charac te r i s t ic  length coordinate di rected along the duct: 

FO 
VeO 

(3.1) 

x 

0 

Fv = ((9-- l) V 2 -- @ (V -- 1) I,,;M 2 (V -- f) + M ~ + --y- (V 2 _ 

I %o 1 Fo = - -  (@-- I) V ~ ~m 2 - t + ~ ( M  2 - 1 )  + O ( 7 - - 1 )  M e ( v - 1 ) [ ~ : M  2 ( V - t ) + t l a  

F ~  = (0 - -  1) V~ (~M 2 + t) - -  ~ 0  (V • t) [(~ - -  t) (~M"- + 'J) (V - -  I) + (7 + 1) V] 

and ~ = (Cp/C)(lt/ld). The pa rame te r  a ,  for the sake of simplicity,  can be taken as constant. This does not 
influence the resul ts  of a qualitative analysis ,  since the type of singular points on the line of equilibrium 

* The s t ra ight  line (plane) M z = 1 consti tutes a set of points corresponding to a limiting state of the flow. 
Some of them are  establ ished at the exit c ross  section of the duct (cr is is  of flow [9]), others  a re  es tab-  
lished at the en t ry  to it. 
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Fig. 3 

does not depend on the magnitude of a (see below). With the condition a = const  taken into account, the 
sys tem of equations (3.1) is autonomous, and its solutions can be depicted by t ra jec tor ies  in the phase 
space M 2 - V - |  (of course ,  in the region of i t  where M 2, V, and | 0). 

The functions Fv, F 0 and FM being zero  constitute equations of the zero  surfaces ,  at the points of 
which, respect ively,  

d v  dO dM~ ^ aX =o, -ag-=o, -7/-=0 

The zero  surfaces  and their  intersect ions with the plane M z = 1 are  shown in Fig. 1. The a r rows  on 
the surfaces  point to the regions of the phase space in which the sign of the derivative of the given variable 
with respec t  to the coordinate is positive. The zero  surfaces  in te rsec t  along the s traight  line V = 1, | = 1 
and along the curve M ~ -- 1, ~ = (0 --  1)V ~ -  370 ( V -  l). ( V -  F), where F = (7 -1 ) /%  All points of the 
straight line V = 1, O = 1 cor respond to the posit ions Of equilibrium. We l inearize the sys tem (3.1) in the 
neighborhood of this straight line: 

(o-1) 
dO 

( i  ~ - -  i ) - - ~  = (V - -  1) ~Tr/ '  - ( o -  1) [ % ( i  2 - -  i )  + ~ ,M = -  1 ]  ( 3 . 2 )  
L % J 

(M ~ -- t) aM2 ( V  - -  1) a (7 + 1) M ~ + (0-- t) M 2 (TM 2 + t) 
d X 

The eigenvalues which determine the type of singularity of the posit ions of equilibrium on the straight  
line V = 1, | = 1 a re  found f rom the following determinant being zero  [2, 12, i3]: 

7 FM~ - -  ~ ' (M 2 -  t) 
L ~  \t--~-s - -  M 2  , 0 

a (~-~--~ 1) ' [ (M~ - -  i) c~ / cx + (~M ~ - -  1) 

I i M P - - t )  ~ ,  0 = 0  
_ (7 4- 1) ~)a .  M ~ (TM 2 + i) __ 

(3.3) 

One of the eigenvalues is identically zero.  Consequently, the t r a jec to r ies  in the neighborhood of the 
singular points of the s traight  line of equilibrium are  located in planes. Two other eigenvalues Xl,2 < 0 for 
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M ~ ~ t, M ~ < (t § n)-i~/, / 7 (7* = (cp + • / (Cv  + • This cor responds  to a stable position of equilib- 
r ium of the node type. The phase t r a jec to r ies  converge to points of this type (see Fig. 2). For  small de- 
viations f rom the values V = 1 and | = 1 a tendency to re turn into the initial state prevai ls .  For  (I + n)-~,/* / 
? ~ M ~ ~ t the eigenvalues X 1 > 0, X~ < 0. On this segment  of the straight line V = 1, | = 1 singular points of 
the saddle type cor respond  to unstable positions of equilibrium. Small deviations f rom them lead to fur-  
ther  widening of the t r a jec to r ies  away f rom the posit ions of equilibrium. 

To determine the singular points in the plane M ~ = 1 we use the variable V introduced above. The sys -  
tem of equations (3.1) can be reduced to two differential equations in M S and 7. Consequently, analogously 
to [4] the phase t r a j ec to r i e s  in the neighborhood of the singular points of the plane M S= 1 are  also located 
in planes. The equation in M S and 7 af ter  l inearizat ion has the form 

dM ~ A~I § B (M~ --  1) (3.4) 
d~l C~I + D (M 2 -- t) 

where 

A =  i f+ l )  
ov~ ' B = ~ , ~ ( ~ + - - ~ I P  - V )  

c = -v-(r  + l ) +  2 ( v -  ~ ) -  e 

c• " Tn V X 

The eigenvalues are  found f rom the following determinant [13] being zero: 

C (D--  %) = 0 

The eigenvalues depend on the coordinates of the singular points and the p a r a m e t e r s  of the problem. 
One of the possible distributions of singular points on the curve 7 =0, M S= 1 is shown in Fig. 2. For  V< 1 a 
pa r t  of the curve can consis t  of singutar points of the focus type (for example, for a = 1, T = 1.4 the region 
of loci is formed for the values n =  0.17). The insignificant dimension of this region and the narrow range 
of p a r a m e t e r s  which corresponds  to it as well as the relative simplici ty of the t r a j ec to r i e s  allow us to 
omit the analysis  of flows for singular points of the focus type. A continuous transi t ion of the velocity of 
flow of the gas through the veloci ty of sound is  possible through singular points of the saddle and nodetypes.  
The curve 7 = 0  divides the plane M S= 1 into regions of the flow c r i s i s  (not shaded in Fig. 2) and the l imiting 
states at the ent ry  to the duct (shaded in Fig. 2). 

The origin of the coordinates  of the phase space (M 2 =V = | = 0) also constitutes a singular p o i n t -  a 
three-dimensional  node. Indeed, l inearizing Eqs (3.1) in the neighborhood of this point, we obtain 

dM ~ M s dM ~ M s 
dV =. -V-- ' dO 0 

Consequently, hi = k2 = X3. 

To cons t ruc t  the field of t ra jec tor ies  in the entire phase space we find the separa t r ix  sur faces  formed 
f rom t ra jec tor ies  issuing in different direct ions f rom the singular points of the s traight  line of equilibrium 
V = | = 1 and the curve ~? =0, M ~= 1. Three  separa t r ix  surfaces  (81, S 2 and S 3) are  depicted in Fig. 3. The 
surface S 1 (Fig. 3a) p a s s e s  through the straight line of equilibrium V 2 = 1, | = 1, the | (V =M S = 0) axis, and 
the curve 7 = 0, M S= 1. A continuous t ransi t ion f rom subsonic to supersonic flows is basically rea l ized  
along this surface.  The surface 82 passes  through the cmwe 7=0 ,  M2=l,  a pa r t  of the | (V=M2=0) axis, 
and a par t  of the s traight  line | = 1, M S = 0. A continuous transi t ion f rom supersonic to subsonic flows is 
rea l ized along it. Finally, the surface S 3 (Fig. 3c) passes  through the straight line of equilibrium V = 1, 
| = 1, the s traight  line | = 1, M 2 = 0 and a par t  of the | (V =M S= 0) axis. A t r a j ec to ry  pass ing through the 
point M 2= 1, V = 1, | = 1 bel0ngs to this surface.  The separa t r ix  surfaces  divide the phase space into six 
regions,  each of which includes a subregion of supersonic (Fig. 3d) and that of subsonic flow of the gas 
(Fig. 3e). On the separa t r ix  surfaces  (Fig. 3) we have marked  individual t r a jec to r ies  which form these 
surfaces .  The a r rows  on the t ra jec tor ies  indicate the variat ion of the phase var iabIes  M e, | and V along 
the duct (in the positive direction of the X coordinate).  

The t ra jec to r ies  of the phase space which do not belong to the phase surfaces  a re  drawn to them in 
the neighborhood of singular l ines.  This c i rcumstance  allows us to represen t  quite c lea r ly  the entire field 
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of t ra jec tor ies  which begin at the origin of the coordi -  
nates and at the l imiting states at the ent ry  in the duct 
(on the plane M ~ = 1) or originate f rom positions of un- 
stable equilibrium, i.e.,  coincide with the cor respond-  
iflg separa t r ices  of saddles. The t ra jec tor ies  end, a r -  
r iving at the c r i s i s  of  the flow or at a position of stable 
equilibrium. 

Any concrete flow in the duct is  matched on the 
phase diagram by a definite segment of one of the phase 
t ra jec tor ies  whose initial point corresponds  to the state 
of the flow in the ent ry  section of the duct and whose 
final point cor responds  to the state of flow in  the exit 
section. 

We note that the behavior of the integral curve 
can easi ly be explained by the second law of the rmo-  
dynamics. The entropy S of a two-phase flow grows 
along the phase t ra jec tor ies  in the direct ions indicated 
by ar rows.  On the line of equilibrium V = 1, | = 1 an 
ext remum of the entropy cor responds  to each point: 
for M2> 1 and M ~ < (t + ~)-1 7* / 7 it is  a maximum; 

for I > M ~ > (1 + ~)-1 7* / 7 it is  a maximum for the t ra jec tor ies  tending to the lines of equilibrium and a 
minimum for t ra jec tor ies  going away f rom it. In the plane M 2 = 1 the derivatives of the gas-dynamic pa- 
r a m e t e r s  with respect  to the coordinate tend to infinity, while the variat ion in the entropy is bounded. 
Therefore  the states for M 2 = 1 are  isentropic (in relation to the variat ion of the flow p a r a m e t e r s  dS/du 1 = 0 
and others). The set of points bounded by the curve ~ = 0 in the plane M z = 1 (shaded in Fig. 2) corresponds  
to states with minimum entropy, while the res t  of the points of the plane cor respond to a maximum of en- 
tropy. Thus, all states on the line of equilibrium V = 1, 0 = 1 and the plane M ~ = 1 (excluding the access  points 
on the line ~?=0, M 2= 1) are  l imiting states - the initial states in which the entropy is a minimum and the 
final s tates in which it  is  a maximum. At the access  points all flow pa rame te r s ,  including entropy, vary  
continuously. 

To determine the charac te r  of variat ion of the different variables  along the length of the duct, we ad- 
ditionally find surfaces  in the phase space at points of which the derivat ives of p res su re ,  velocity and t em-  
pera ture  of the phases with respec t  to the independent pa ramete r  X become zero.  F r o m  Eqs. (1.6) and the 
law of invers ion of actions (1.7) we obtain 

dT1 
dX 

a--2-P = 0, if dX 

dX 

Fp = [V + ~ r M  * ( V "  t) l  a (V - -  i )  O - -  V'  (O - -  i )  = 0 

i f  F~,---- ( 0 - -  I)V~--OTM*(V-- l )  (V - -  r)  ---- 0 

= o, i f  Fr  = ( o . -  1) v '  ( l  - ~'M ~) + OVrM' (V - -  l )  [ .[M ~ (V - -  t)  + i ]  = 0 

dT~ 
a ~ 2 - - 0 ,  i f  V = i ;  , , = 0 ,  i f  0 - - i  dx dX 

The sur faces  Fp=0 ,  Fu l=0  , FTI=O , the planes V = I ,  |  and Mz=I ,  shown in Fig. 4, divide the 
phase space into 28 regions with given signs of the derivatives (see Table 3). Examining how the t r a j ec -  
tor ies  in each of the six zones of the phase space pass through these sur faces  and between them, we can 
establish the cha rac te r  of variat ion of the p re s su re ,  velocity and tempera ture  of the phases as  well as  
other  p a r a m e t e r s  along the t ra jec tor ies .  

In Fig. 5 we have presented a summary  of pract ica l ly  all possible reg imes  of flow classif ied with 
respect  to the types of t r a jec to r ies  which lead to supersonic and subsonic stable posit ions of equilibrium 
(V = 1, | = 1) or end with the c r i s i s  (M 2 = 1) as well as for t r a jec to r ies  which cor respond  to a continuous 
transi t ion through the velocity of sound. The charac te r  of variat ion of the pa r ame te r s  along the length of 
the duct for reg imes  corresponding to singular points of the node type is shown in Fig. 5a (M > 1) and 
Fig. 5b (M < 1). The numbers above the curves  denote the corresponding regions of the phase space (see 
Fig. 4). The reg imes  of flow shown in Fig. 5c cor respond to singular points of the saddle type on the 
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straight  line of equilibrium. The variat ion of the flow pa rame te r s  ending with the c r i s i s  (M = 1) is shown 
in Fig. 5d. The flows corresponding to a continuous t ransi t ion through the velocity of sound along the t r a -  
jec tor ies  forming the separa t r ix  surfaces  S i and S 2 (Fig. 3a and b) are  charac te r ized  by the reg imes  p r e -  
sented in Fig. 5e and f, respect ively .  

4. Plane Phase Diagrams.  We consider  four par t icular  cases  of two-phase flows which can be in-  �9 
vest igated by means  of plane phase d iagrams M2-V or M 2 - |  namely:  

1) a two-phase flow with identical t empera tures  of both phases | = 1 for V ~ 1. Instantaneous t em-  
pera ture  r e l axa t ion / t  = 0 cor responds  to this. Instead of Eq. (1.6) we take dT1/dx = dT~/dx; 

2) a two-phase flow with identical phase velocit ies V = 1 for @ ~ 1. The instantaneous veloci ty r e -  
laxation ld  = 0 and the equation du l /dx  = duz/dx cor responds  to this; 

3) a two-phase flow with a constant t empera ture  of the solid phase T~=const  (dT2/dx=0) in the case 
of infinite length of tempera ture  r e l axa t ion / t  = ~; 

4) a two-phase flow with a constant veloci ty of the solid phase t h =cons t  (du2/dx=0) in the case l d=  r162 
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TABLE 3 

No. of 
region in u,' 
Fig: 4 

1 >o 
>o 

3; 16 > 0  
4, 23 >0 
5, 1~ >0 
6 <0 
7, 19 <0 
8, 18 <0 

>0 <o 
>o <o 
>o >o 
<o >o 
<0 >o 
<o >o 
<o >o 
>0 >0 

No. of I T~' ~' region in 
Fig. 4 

It 
> 0  < 0  [[ 9, 17 

<o <o (t lO, 22 <o <o 11, 20 
<0 <0  12, 27 
<0 >0 ~-~ 
<0 >0 15, 2~ 
>0 >o 21, 28 
>0 >0  ~5, ~6 

~tz a ul / 

<o >o 
<o >o 
<o <o 
<o >0 
>o <o 
>o <0 
<o >o 
<o >0 

T,, I 
>o 
<o 
<o 
<o 
<o 
>o 
<o 
>o 

T I  t 

<o 
<o 
>o 
>0 
>o 
<o 
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For  these conditions the sys tem of equations (1.1)-(1.6) reduces to equations of the law of inversion 
of actions. They constitute a sys tem of two equations for V and Mz, for  I t=0 or /t = oo: 

(M," -- t)" Td h v = [~ ~MJW ,-iV -- V) -- (M, ~ -  l)] .V t,~-- t 

l) ainU.. _x(T--~)M.~ M,')(r-- 

where M , z = T / y ,  Mz for / t=0 (0=1) and M,~-=M 2 for / ,=  ~ (Tg.=eonst) and, respect ively ,  for 0 and M, 2 for 

/d = 0 or ld = ~, we have 

I .. din8 c (i--TM. ~) (M, 2 - 1 )  
(M, ~ -  1 ) ~  = n ~ " - - " ' 6 - - -  I t 

( M ,  2 - -  i )  d In M,  2 = U + ( i  -I- TM, ~) 0 -- t 

where M, 2 = (1+ n) M z for I d = 0 (V = 1) and M,  z =M S for  /d = ~(u  2 = eonst). 

The phase d iagrams constructed for the equations just presented and the zones of unstable equilibria 
are  shown in Fig. 6. Since the qualitative form of the plane d iagrams for the cases  | = 1 and T 2 = const, on 
one hand, and V = 1 and u 2 = const, on the other hand, coincides in pa i rs ,  we have depicted in Fig. 6 two di- 
ag rams  with two equal scales  along the absc issa  axis. 

The phase t ra jec tor ies  in Fig. 6a and b show the charac te r  of variat ion of the dimensionless velocity 
V and the tempera ture  | and the square of the Much number M, z along the length of the duct (in the d i ree-  
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t ion i n d i c a t e d  by the  a r r o w s  on the  c u r v e s ) .  The  e q u i l i b r i u m  s t a t e s  fo r  @ = 1 o r  Tz= c o a s t  a r e  r e p r e s e n t e d  
by the  s t r a i g h t  l ine  V = 1 (F ig .  6a) and  the  s t r a i g h t  l ine  | = 1 (F ig .  6b) fo r  V = 1 o r  u2=cons t ;  the l ine  IV[. 2= 1 
c o r r e s p o n d s  to the  l i m i t i n g  s t a t e s .  

Al l  t r a j e c t o r i e s  in  F ig .  6 begin  f r o m  the l i m i t i n g  s t a t e s  a t  the  e n t r y  in to  the  duc t  - on the  l ine  M 2 = 1, 
o r  t hey  s t a r t  f r o m  the s t a t e s  of  u n s t a b l e  e q u i l i b r i u m .  The  t r a j e c t o r i e s  end  a t  the  p o i n t s  of  s t a b l e  e q u i l i b -  
r i u m  on the l ine  V = 1 (F ig .  6a) o r  the  l i ne  | = 1 (F ig .  6b) o r  on the l ine  M .  ~ = 1 a t  the  p o i n t s  c o r r e s p o n d i n g  
to the  c r i s i s  a t  the  e x i t  f r o m  the  duct .  

I t  shou ld  be e m p h a s i z e d  the l i m i t i n g  s t a t e s  a r e  m a t c h e d  on t h e s e  d i a g r a m s  in the  c a s e  | = 1 by the  
equa t ion  M ~ =7*/T and  in the  c a s e  V = 1 by the  equa t ion  1H 2 = (1+ ~4) -1, whi l e  for  T 2 = c o a s t  and  u2= cons t ,  
j u s t  a s  in the  g e n e r a l  c a s e  of a t h r e e - d i m e n s i o n a l  p h a s e  d i a g r a m ,  t hey  a r e  m a t c h e d  by the  equa t ion  M 2 = 1. 

In  s p i t e  of  the  q u a l i t a t i v e  c o r r e s p o n d e n c e  be tween  the p h a s e  t r a j e c t o r i e s  in  a s p a c e  and  on a p l ane ,  
t h e r e  i s  no con t i nuous  l i m i t i n g  t r a n s i t i o n  be tween  t h e m  - f r o m  w e a k l y  n o n e q u i l i b r i u m  f lows (| ~ 1 or  V ~ 1) 
to  e q u i l i b r i u m  f lows  (| = 1 o r  V = 1) and  a l s o  f r o m  the  c o n d i t i o n s  T2~  c o n s t  o r  u2~ c o n s t  to  the  e q u a l i t i e s  
T 2 = c o a s t  and  u z = c o n s t .  T h i s  m a n i f e s t s  i t s e l f  f i r s t  of a l l  in  the  d i f f e r e n c e  of the  d i m e n s i o n s  of the  zone  of 
u n s t a b l e  e q u i l i b r i a  (F ig .  6c). In  the g e n e r a l  c a s e  on the l ine  V = 1 and  | = 1 t h i s  zone  o c c u p i e d  the  s e g m e n t  
bounded by the i n e q u a l i t i e s  (1 ~- ~)-17" / 7 < M2 < 1. On p l a n e  d i a g r a m s  on the l ine  V = 1, fo r  T~. = c o n s t ,  
we have  (1+ ~ ) -1<  Mz< 1 and ,  fo r  lt= O, r e s p e c t i v e l y  (t + • / 7  < M~ < t .  A n a l o g o u s l y  to  t h i s ,  on the  
l ine  | = 1, f o r  u 2 = c o a s t ,  we have  T* /7  < M ~< 1 and,  f o r  V = 1, r e s p e c t i v e l y  (t + z)-17 * / ? < M 2 <  (t ~- ~)ul. 
T h i s  m e a n s  tha t  fo r  | = 1 the  c r i t i c a l  v e l o c i t y  i s  g iven  by the quan t i t y  u* = aT = ~ ( for  • ~ t ,  
7" = (% § ~c) / (cv + • -+ t i s  equal  to the  i s o t h e r m a l  v e l o c i t y  of sound),  whi le  for  V = 1 the  c r i t i c a l  v e -  
l oc i t y  i s  u* = a~ ---- ~ T P  / (Pl + P~) ( s i n c e  (pl+p~)/pl=(l+ ~)).  I n t r o d u c i n g  the cond i t i ona l  Mach  n u m b e r  
M** = u l / u* ,  we ob ta in  in  both c a s e s  the  c r i t i c a l  v e l o c i t y  IV[** = 1. 

The  r e s u l t s  o b t a i n e d  h e r e  a l l o w  us  in  p r i n c i p l e  to  d e t e r m i n e  the  b e h a v i o r  of a t w o - p h a s e  flow ( i . e . ,  
the  t r e n d s  of  v a r i a t i o n  of the  v e l o c i t y  and  t e m p e r a t u r e  of  the  p h a s e s ,  the  p r e s s u r e ,  the  Mach  n u m b e r ,  and 
o t h e r s  a l o n g  the l eng th  of a duct  of  c o n s t a n t  c r o s s  sec t ion)  fo r  any  i n i t i a l  cond i t i ons .  T h e y  con ta in  a l l  v a -  
r i e t i e s  of  r e g i m e s  of f low a s  we l l  a s  i n d i c a t i o n s  of a q u a l i t a t i v e  i m p e r f e c t i o n  of the  s p a t i a l  c a l c u l a t i o n  
s i m p l i f i c a t i o n s  ( a s s u m p t i o n s  abou t  the  p a r t i a l  e q u i l i b r i u m  u 1 = u  2 o r  T 1 = T2) , p a r t i c u l a r l y  for  subson ic  f lows .  
The  a v a i l a b i l i t y  of a t h r e e - d i m e n s i o n a l  p h a s e  d i a g r a m  can  c o n s i d e r a b l y  f a c i l i t a t e  the  c o u r s e  of  n u m e r i c a l  
c a l c u l a t i o n s  fo r  p a r t i c u l a r  cond i t i ons .  F i x i n g  t h e s e  cond i t i ons ,  we can  e s t a b l i s h  the  p o s s i b i l i t y  of p r a c t i c a l  
r e a l i z a t i o n  and  the  b o u n d a r i e s  of  e x i s t e n c e  of  the  i nd iv idua l  r e g i m e s .  By m e a n s  of the  d i a g r a m  we can  
c a r r y  out an a n a l y s i s  of  d i s c o n t i n u o u s  t w o - p h a s e  f lows (having jumps)  fo r  the  s y s t e m  c o n s i d e r e d  and  a l -  
so  p r e d i c t  c e r t a i n  c o n c l u s i o n s  abou t  the  m o t i o n  of a t w o - p h a s e  f low in duc t s  of v a r i a b l e  c r o s s  s e c t i o n ,  
which  i s  a c a s e  of p r a c t i c a l  i m p o r t a n c e ,  and  f ina l ly ,  we can  t ake  in to  accoun t  p h a s e  t r a n s i t i o n s .  T h e s e  
p r o b l e m s ,  h o w e v e r ,  n e c e s s i t a t e  a s p e c i a l  i n v e s t i g a t i o n .  
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